Load dependency of end-systolic pressure-volume relations in isolated, ejecting canine hearts.

نویسندگان

  • O Nishioka
  • Y Maruyama
  • K Ashikawa
  • S Isoyama
  • S Satoh
  • J Watanabe
  • Y Shimizu
  • T Takishima
چکیده

If characteristic muscle properties such as myocardial viscosity and/or shortening deactivation influence left ventricular ejection in the whole heart, the slope of the left ventricular end-systolic pressure-volume relation should be a function of both the contractile state and the loading mode. Thus, the load dependence of the end-systolic pressure-volume relation was examined using isolated, perfused canine hearts ejecting saline into a hydraulic loading system. The instantaneous left ventricular volume was measured with a plethysmograph. Under constant coronary flow and heart rate, two regression lines for end-systolic pressure-volume relations in two sets of loading modes were obtained: (1) Preload (left ventricular end-diastolic pressure; 4-15 mmHg) changes under fixed afterload impedance (preload changes); (2) Afterload impedance (peripheral resistance; 1.9-9.6 x 10(3) dyn sec cm-5) changes under fixed left ventricular end-diastolic volume (afterload changes). The slope of the end-systolic pressure-volume relation with afterload changes was steeper than that with preload changes (6.3 +/- 0.7 vs 4.8 +/- 0.6 mmHg/ml, p less than 0.05). Accordingly, under constant coronary flow, the slope of the end-systolic pressure-volume relation depended on loading conditions within the physiological range of afterload impedance and preload. This finding supports our hypothesis and implies that the slope change is of limited value as a contractile index in the ejecting heart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

End-systolic pressure as a balance between opposing effects of ejection.

Ejection has previously been thought to exert only negative effects on end-systolic left ventricular pressure, via mechanisms like shortening deactivation and the force-velocity relation. Whether ejection also exerted a positive influence on pressure generation was tested by comparing two successive beats: 1) the last beat of steady-state ejection versus 2) a totally isovolumic contraction at t...

متن کامل

Hemodynamic effects of direct biventricular compression studied in isovolumic and ejecting isolated canine hearts.

BACKGROUND Biventricular direct cardiac compression (DCC) can potentially support the failing heart without the complications associated with a blood/device interface. The effect of uniform DCC on left and right ventricular performance was evaluated in 7 isolated canine heart preparations. METHODS AND RESULTS A computer-controlled afterload system either constrained the isolated heart to cont...

متن کامل

Equal oxygen consumption rates of isovolumic and ejecting contractions with equal systolic pressure-volume areas in canine left ventricle.

Left ventricle systolic pressure-volume area (PVA) has been found to be highly linearly correlated with cardiac oxygen consumption rate per beat (VO2) in a given canine heart with a stable inotropic background. PVA is a specific area in the pressure-volume (P-V) diagram that is bounded by the end-systolic and end-diastolic P-V relationship lines and the systolic segment of the P-V loop, consist...

متن کامل

Effects of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle. End-systolic volume clamping.

To study the effects of contraction mode on ventricular end-systolic pressure-volume relationship, we compared the end-systolic pressure of isovolumic contraction with that of ejecting contraction at an identical end-systolic volume. The left ventricle of excised cross-circulated canine hearts was fitted with a water-filled balloon. The balloon was connected to a hydraulic pump that allowed the...

متن کامل

Long-term versus intrabeat history of ejection as determinants of canine ventricular end-systolic pressure.

We studied the effect of ejection on end-systolic pressure in isolated heart preparations. Ejecting beats were compared with isovolumic beats having the same volume as at end systole. While holding end-systolic volume constant, various stroke volumes, including negative stroke volumes (volume injected during systole), were imposed using a predetermined volume command. After switching contractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Japanese heart journal

دوره 29 5  شماره 

صفحات  -

تاریخ انتشار 1988